Euler and His Work on Infinite Series
نویسنده
چکیده
Leonhard Euler is one of the greatest and most astounding icons in the history of science. His work, dating back to the early eighteenth century, is still with us, very much alive and generating intense interest. Like Shakespeare and Mozart, he has remained fresh and captivating because of his personality as well as his ideas and achievements in mathematics. The reasons for this phenomenon lie in his universality, his uniqueness, and the immense output he left behind in papers, correspondence, diaries, and other memorabilia. Opera Omnia [E], his collected works and correspondence, is still in the process of completion, close to eighty volumes and 31,000+ pages and counting. A volume of brief summaries of his letters runs to several hundred pages. It is hard to comprehend the prodigious energy and creativity of this man who fueled such a monumental output. Even more remarkable, and in stark contrast to men like Newton and Gauss, is the sunny and equable temperament that informed all of his work, his correspondence, and his interactions with other people, both common and scientific. It was often said of him that he did mathematics as other people breathed, effortlessly and continuously. It was also said (by Laplace) that all mathematicians were his students. It is appropriate in this, the tercentennial year of his birth, to revisit him and survey his work, its offshoots, and the remarkable vitality of his themes which are still flourishing, and to immerse ourselves once again in the universe of ideas that he has created. This is not a task for a single individual, and appropriately enough, a number of mathematicians are attempting to do this and present a picture of his work and its modern resonances to the general mathematical community. To be honest, such a project is Himalayan in its scope, and it is impossible to do full justice to it. In the following pages I shall try to make a very small contribution to this project, discussing in a sketchy manner Euler’s work on infinite series and its modern outgrowths. My aim is to acquaint the generic mathematician with
منابع مشابه
An analytic study on the Euler-Lagrange equation arising in calculus of variations
The Euler-Lagrange equation plays an important role in the minimization problems of the calculus of variations. This paper employs the differential transformation method (DTM) for finding the solution of the Euler-Lagrange equation which arise from problems of calculus of variations. DTM provides an analytical solution in the form of an infinite power series with easily computable components. S...
متن کاملEuler-Lagrange equations and geometric mechanics on Lie groups with potential
Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...
متن کاملBeyond Mere Convergence
In this article, I suggest that calculus instruction should include a wider variety of examples of convergent and divergent series than is usually demonstrated. In particular, a number of convergent series, such as ∑ k≥1 k3 2k , are considered, and their exact values are found in a straightforward manner. We explore and utilize a number of mathematical topics, including manipulation of certain ...
متن کاملOn Ramanujan and Dirichlet Series with Euler Products
In his unpublished manuscripts (referred to by Birch [1] as Fragment V, pp. 247-249), Ramanujan [3] gave a whole list of assertions about various (transforms of) modular forms possessing naturally associated Euler products, in more or less the spirit of his extremely beautiful paper entitled "On certain arithmetical functions" (in Trans. Camb. Phil. Soc. 22 (1916)). It is simply amazing how Ram...
متن کاملMultiple Gamma Function and Its Application to Computation of Series
The multiple gamma function Γn, defined by a recurrence-functional equation as a generalization of the Euler gamma function, was originally introduced by Kinkelin, Glaisher, and Barnes around 1900. Today, due to the pioneer work of Conrey, Katz and Sarnak, interest in the multiple gamma function has been revived. This paper discusses some theoretical aspects of the Γn function and their applica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007